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Introduction

U In stochastic computing (SC), information is encoded and processed by random binary bit streams.
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N;: number of 1’s in the stochastic sequence
Ns: bit length of the stochastic sequence
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Stochastic Integrator
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A stochastic integrator Symbol

Function of a stochastic integrator: seq,,s = | (a — b)dt

An example of stochastic integrator (N=8)

[ a; b Ci RN;  seqout
0 1 0 (0.10000000), 0.75 0
1 1 1 (0.10000001), 0.20 1
2 0 1 (0.10000001), 0.19 1
3 0 0 (0.10000000), 0.62 0

Ci+1/2N ai=1&bi=0
Civ1 =3¢ —1/2Y a;=0& b;=1
Ci al-=bl-

1
Civ1 = C; + 55 (a; — by). (1)
Accumulating (1) fori =0,1,2, ...,k —1
1 @k
ck = Co + 55 Xizo (@i — by) - (2)
Taking the expectation of (2)

Elcx] = co + 55 250 (Elag] — E[b]).  (3)

[Saraf et al., DATE 2014]



Unbiased Euler Solution Estimator
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Vier = yi T hf (), (4) Elck] = co + oy 2izg (Ela] — E[B]).  (3)
where h 1s the step size and t; = h - i. Let ¢g = yo, E[a;] — E[b;] = f(hi), then
(4) can be changed to: R " . 1
Ps =y BFGD) =y G+ D). (5 | | TG
By accumulating (5) fori = 0,1,2, ..., k A stochastic integrator provides an
Ve = yo + AL F(hi) ~ y(hk). (6) unbiased estimate to the Euler solution

with a step size of 1/2N.
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Stochastic Solvers for Nonhomogeneous ODEs
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Hardware solution produced by stochastic ODE
A stochastic ODE solver for (7), (8) and (9). solver vs. analytical solution.



Stochastic Solvers for Systems of ODEs

RMSE: 4.7x1073
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Hardware solution produced by stochastic ODE
solver vs. analytical solution.

A stochastic ODE solver for (10).



Higher-order Stochastic ODE Solvers
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Introduce an auxiliary function z(t), satisfying

az(t) _ d?y(t) n 2dy (t), to reduce the order. Hardware solution producgd by sto-chastic ODE
dt dt dt solver vs. analytical solution.
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L Error assessment and error reduction schemes



Error Assessment of a Stochastic Integrator

E[ck] = co + zNz 'E[(a; — by)] =
U Error of Euler method 10"
o Reduced by using a smaller step size, 1.e.,
increase the size of counter M. 107
1 Random fluctuation of stochastic circuits Ué
o The wuse of low-discrepancy (LD) “ 107

sequences can reduce random fluctuation.

o Sharing RNGs for generating the inputs of
the stochastic integrator can also reduce

the variance.
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Bit width

*PR: pseudorandom sequences generated by the
linear feedback shift registers (LFSRs).

[Alghi and Hayes, DATE 2014]
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Hardware Evaluation and Performance Comparison

ODE Metric SC Binary* Improvement
Energy/Operation (fJ) 144.49 201.05 28%
(8) Throughput/Area (solution/us/um?) 13.84 3.86 258%
Minimum runtime (ns) 104.96 263.68 60%
Energy/Operation (fJ) 186.10 253.05 26%
9) Throughput/Area (solution/us/um?) 9.76 0.94 934%
Minimum runtime (ns) 104.96 586.24 82%
Energy/Operation (fJ) 201.21 466.00 56%
(10)  Throughput/Area (solution/us/um?) 4.75 0.58 716%
Minimum runtime (ns) 2573.59 8557.20 70%
Energy/Operation (fJ) 156.04 591.62 74%
(11)  Throughput/Area (solution/us/um?) 5.68 0.44 1184%
Minimum runtime (ns) 1597.44 6819.84 76%

*Binary circuits are built by shifters and adders to save hardware cost. The algorithm implemented by binary
circuits are the 2nd Runge-Kutta method with 8-bit width. The stochastic circuits are also 8-bit width.



Stochastic vs. Binary Circuits with Different Bit Widths

10"
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Comparison of stochastic and binary ODE solvers with different bit widths.
For stochastic ODE solvers, it is the bit width of counter.
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Conclusion and Future Work

A novel design for solving an ODE 1s proposed by using a stochastic integrator to
implement the accumulation in the Euler numerical method.

The stochastic integrator provides unbiased estimate of the Euler numerical solution.

The stochastic ODE solver has a lower energy consumption, higher TPA and shorter
minimum runtime compared to binary designs.

The error analysis shows that the sharing of RNGs 1s effective in reducing error for
pseudorandom sequences, while 1t 1s less effective for LD sequences.

Extended range of representation for the solutions will be investigated in the future
work.
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Thank you for your attention.



