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q In stochastic computing (SC), information is encoded and processed by random binary bit streams. 

[Gaines 1969]
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Stochastic Integrator
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A stochastic integrator Symbol

Function of a stochastic integrator: !"#$%& ≈ ∫ ) − + ,-

./01 = 3

./ + 1/2
8 )/ = 1 & +/ = 0

./ − 1/2
8 )/ = 0 & +/ = 1

./ )/ = +/

; )/ +/ ./ RN/ seqABC

0 1 0 0.10000000 E 0.75 0

1 1 1 0.10000001 E 0.20 1

2 0 1 0.10000001 E 0.19 1

3 0 0 0.10000000 E 0.62 0

……

An example of stochastic integrator (N=8)

[Saraf et al., DATE 2014]
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Unbiased Euler Solution Estimator
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Euler
Method:

!" #
!#

= % #

&"'() = "' + ℎ%(#') , (4)

where ℎ is the step size and #' = ℎ ⋅ 0.

(4) can be changed to:

&"'() = "' + ℎ% ℎ0 ≈ "(ℎ 0 + 1 ). (5)

By accumulating (5) for 0 = 0, 1, 2, … , 6

&"7 = "8 + ℎ∑':87;) %(ℎ0) ≈ " ℎ6 .                 (6)
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Let =8 = "8, < @' − < C' = %(ℎ0), then

< =7 = &"7 ≈ "( 7
>?
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Stochastic 
Integrator:

A stochastic integrator provides an
unbiased estimate to the Euler solution
with a step size of E/GH.
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Stochastic Solvers for Nonhomogeneous ODEs
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Hardware solution produced by stochastic ODE 
solver vs. analytical solution. A stochastic ODE solver for (7), (8) and (9).
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Stochastic Solvers for Systems of ODEs
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Hardware solution produced by stochastic ODE 
solver vs. analytical solution. 

A stochastic ODE solver for (10).

RMSE: 4.7×1034



Higher-order Stochastic ODE Solvers
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Introduce an auxiliary function z(t), satisfying
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Hardware solution produced by stochastic ODE 
solver vs. analytical solution. 

RMSE: 5.9×10<=
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Error Assessment of a Stochastic Integrator
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q Error of Euler method

o Reduced by using a smaller step size, i.e.,

increase the size of counter N.

q Random fluctuation of stochastic circuits

o The use of low-discrepancy (LD)

sequences can reduce random fluctuation.

o Sharing RNGs for generating the inputs of

the stochastic integrator can also reduce

the variance.

! "# = "% + '
() ∑+,%

#-'! ./ − 1/ = 23# ≈ 3( #(6).

*PR: pseudorandom sequences generated by the 
linear feedback shift registers (LFSRs).

[Alghi and Hayes, DATE 2014]
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Hardware Evaluation and Performance Comparison 8

ODE Metric SC Binary* Improvement

(8)
Energy/Operation (fJ) 144.49 201.05 28%

Throughput/Area (solution/)*/)+,
) 13.84 3.86 258%

Minimum runtime (ns) 104.96 263.68 60%

(9)
Energy/Operation (fJ) 186.10 253.05 26%

Throughput/Area (solution/)*/)+,) 9.76 0.94 934%

Minimum runtime (ns) 104.96 586.24 82%

(10)
Energy/Operation (fJ) 201.21 466.00 56%

Throughput/Area (solution/)*/)+,
) 4.75 0.58 716%

Minimum runtime (ns) 2573.59 8557.20 70%

(11)

Energy/Operation (fJ) 156.04 591.62 74%
Throughput/Area (solution/)*/)+,

) 5.68 0.44 1184%
Minimum runtime (ns) 1597.44 6819.84 76%

*Binary circuits are built by shifters and adders to save hardware cost. The algorithm implemented by binary

circuits are the 2nd Runge-Kutta method with 8-bit width. The stochastic circuits are also 8-bit width.



Stochastic vs. Binary Circuits with Different Bit Widths 9

Comparison of stochastic and binary ODE solvers with different bit widths. 
For stochastic ODE solvers, it is the bit width of counter.

EPO: Energy per operation
TPA: Throughput per area

Stochastic circuits with 10-
bit counters vs. 8-bit binary
circuits

Advantages:
q Energy per operation
q Throughput per area
q Slightly better accuracy

Disadvantage:
q Slightly longer runtime



Conclusion and Future Work

q A novel design for solving an ODE is proposed by using a stochastic integrator to
implement the accumulation in the Euler numerical method.

q The stochastic integrator provides unbiased estimate of the Euler numerical solution.

q The stochastic ODE solver has a lower energy consumption, higher TPA and shorter
minimum runtime compared to binary designs.

q The error analysis shows that the sharing of RNGs is effective in reducing error for
pseudorandom sequences, while it is less effective for LD sequences.

q Extended range of representation for the solutions will be investigated in the future
work.
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