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Introduction & background

* Training gets more complex as
machine learning model grows.

« Edge training: personalized
machine learning model,
superior privacy protection and
low communication overhead.

It Is required to be energy-
efficient, high-performance and
low-cost, especially for edge
devices.

* Single-bit based dynamic
stochastic computing (DSC) for
efficient weight update.

 Dynamic stochastic computing (DSC)
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DSC circuit for gradient descent with momentum
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* The above adaptive digital element performs ¢ The stochastic integrator is used to

moving average of the input gradients. accumulate {v,} by accumulating the
« The counter provides estimate of v, ;. stochastic sequence encoding signal
 The DSNG generates dynamic stochastic (%;t. For simple hardware
sequence encoding {v,}. implementation, ¢4 is selected to be
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Experiments and results

The proposed design is tested on training VGG16, ResNet18 and MobileNetV2 on
CIFAR10 dataset; learning rate decay by 1/2 after 10 epochs of training starting from
2-10. momentum factor m=1-2-6. The performance is compared with a floating-point

implementation.
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Conclusion and future work

A simple dynamic stochastic computing circuit is proposed to perform the
weight update in the neural network training.

* |t produces a similar test accuracy compared to a floating-point implementation.

 The hardware efficiency will be evaluated in the future and compared with that
of SOTA training implementations.
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Thanks for your attention.

Q&A
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