UNIVERSITY OF ALBERTA

Energy Efficient Stochastic Computing with Sobol Sequences

Siting Liu and Jie Han, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

In this paper, the Sobol sequence is considered for energy-efficient stochastic computing (SC) circuits. The use of Sobol sequences improves the output accuracy of a stochastic circuit with a reduced sequence length compared to the use of the Halton sequences and pseudorandom sequences due to a lower discrepancy. Sobol sequence-based SC elements cost less energy than the Halton-based counterparts when multiple random sequences are required in a circuit.

Introduction

Low-discrepancy sequences

Sobol sequence generator

Algorithm: Sobol sequence generation [4]

 $1: R_0 = 0$

2: for i = 0 to L - 2 do

3:
$$k$$
 = least significant zero position of i

4: $R_{i+1} = R_i \bigoplus V_k$ (the *k*th direction vector) 5: end for

```
Return \{R_i\}, i = 0, 1, ..., L - 1
```

Table 2. Example of a direction vector array

Stochastic Computing (SC)

In SC, information is carried by a stochastic bit stream. For example: Bit stream: $\{0,1,0,1,1,0,0\}$, coding 3/7.

Binary number → inputs	Stochastic number generators (SNGs)	→	Stochastic arithmetic circuits	Stochastic to binary converters	→	Binary number outputs
1	¬• 1 • . • 1 .		1 ,•	, •		

Fig. 1. A typical stochastic computing system.

Stochastic number generators (SNGs)

The component that converts a real number to a stochastic bit stream is usually referred to as an SNG.

Fig. 2. A stochastic number generator (SNG).

Random number generators (RNGs)

Conventionally, an RNG can be implemented by a linear feedback shift register (LFSR).

(b) Pseudorandom sequences generated by LFSRs. Sobol sequences are more evenly distributed than pseudorandom sequences.

Discrepancy describes how evenly a random sequence is distributed in the sample space. It has been shown that a lower discrepancy indicates a smaller error in a Monte-Carlo (MC) integration [2].

□ Since SC can be considered as an MC problem, a lower discrepancy also implies a smaller error in an SC circuit [3].

Table 1. Comparison of LD sequences and LFSR-generated sequence						
	Low-discrepancy (LD) sequences	LFSR-generated sequences				
Known as	Quasi-random sequences	Pseudorandom sequences				
Distribution	Evenly	Irregularly				
Error	$O((\log L)^{s-1}/L)^*$	$O(1/\sqrt{L})$				

* L is the sequence length and s is the dimension of the sample space, i.e., the number of independent stochastic sequences in SC.

l	11000000
2	11100000
3	11110000
•••	

Example: $R_0 = (0.00000000)_2$ Next: $i = 0 \rightarrow k = 0 \rightarrow V_0 = 10000000$ $R_1 = R_0 \oplus V_0 = (0.10000000)_2$ Next: $i = 1 \rightarrow k = 1 \rightarrow V_1 = 11000000$ $R_2 = R_1 \oplus V_2 = (0.01000000)_2$ Next: $i = 2 \rightarrow k = 0 \rightarrow V_0 = 10000000$ $R_3 = R_2 \oplus V_0 = (0.11000000)_2$

□ A design for the Sobol sequence-based SNG is shown in Fig. 5 [5].

Fig. 3. An LFSR. Limitations: low accuracy, long latency [1] Sobol sequences are preferred since they are base-2(binary) LD sequences, with no base conversion required.

(Least Significant Zero detector) Storage Array reset Fig. 5. A Sobol sequence-based SNG.

Hardware Simulation and Analysis

Dimension

Basic SC elements

Bernstein polynomial [6]:

$$y = B(x) = \sum_{i=0}^{n} z_i B_{i,n}(x)$$
$$B_{i,n}(x) = {n \choose i} x^i (1-x)^{n-i}$$

Accuracy comparison

□ Sobol sequence-based designs generally have the best accuracy using the

Conclusion

□ The use of Sobol sequences can lead to a similar or higher accuracy than using pseudorandom sequences and Halton sequences for the same sequence length.

□ When multiple independent random sequences are required, the use of Sobol sequences can reduce the energy consumption compared to the other two random sequences.

Reference

[1] Alaghi, Armin, and John P. Hayes. "Survey of stochastic

A 3rd order polynomial stochastic circuit is implemented: $y = ax^3 + bx^2 + cx + d$.

Energy efficiency comparison

Fig. 8. Energy per operation (EPO) comparison using different sequences.

same sequence length, while LFSRs result in the least accurate outputs. For the unipolar stochastic multiplier, Sobol sequences can achieve a similar accuracy as Halton sequences with half of the sequence length.

> □ Sobol sequence-based designs can achieve better energy efficiency in most cases, especially for the Bernstein polynomial circuit (multiple independent stochastic sequences are required).

Energy per Operation (EPO) for SC: EPO = Sequence length × power × clock period computing." ACM Transactions on Embedded Computing Systems 12.2s (2013): 92.

[2] Niederreiter, Harald. *Random number generation and quasi-Monte Carlo methods*. Society for Industrial and Applied mathematics, 1992.

[3] Alaghi, Armin, and John P. Hayes. "Fast and accurate computation using stochastic circuits." DATE, 2014.
[4] Bratley, Paul, and Bennett L. Fox. "Algorithm 659: Implementing Sobol's quasirandom sequence generator." ACM Transactions on Mathematical Software 14.1 (1988): 88-100.
[5] Dalal, Ishaan L., Deian Stefan, and Jared Harwayne-Gidansky. "Low discrepancy sequences for Monte Carlo simulations on reconfigurable platforms." ASAP, 2008.
[6] Qian, Weikang, et al. "An architecture for fault-tolerant

computation with stochastic logic." IEEE Transactions on Computers 60.1 (2011): 93-105.