

Hardware ODE Solvers Using Stochastic Circuits

Siting Liu and Jie Han, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

Stochastic Integrator and its Formulation

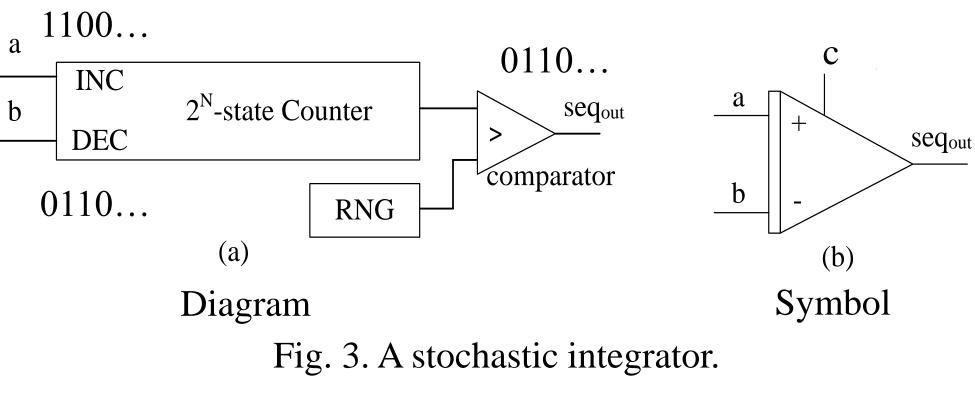
□ Hardware ordinary differential equation (ODE) solvers are designed by using stochastic circuits.

□ The stochastic ODE integrators serve as unbiased Euler solution estimators.

• Several strategies are proposed to reduce the error of stochastic ODE solvers; the designs are verified. □ The stochastic ODE solvers have lower energy cost, higher throughput and shorter minimum computation time than their binary counterparts.

Introduction

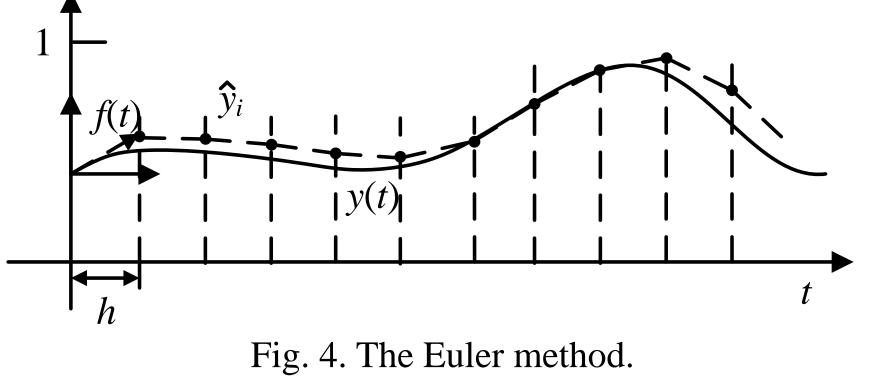
Stochastic Computing (SC)



A stochastic integrator approximates the integration of difference of two input stochastic sequences: the (a-b)dt.

Table 1. An example of stochastic integrator with bit width 8 (N=8)

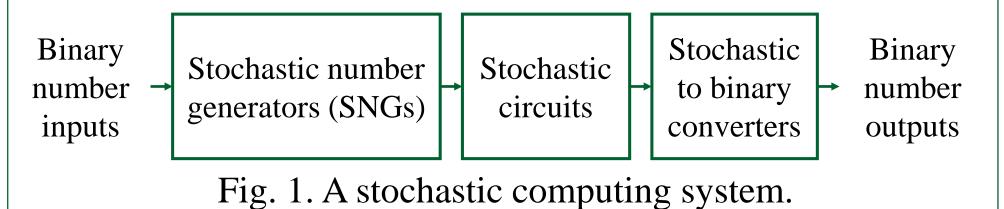
Recall Euler method for solving
$$\frac{dy(t)}{dt} = f(t)$$
,



(4)

$\hat{y}_{i+1} = y_i + hf(t_i) \,,$ where *h* is the step size and $t_i = h \cdot i$. (4) can be converted to

In SC, information is carried by a stochastic bit stream. For example: {0101100}, coding 3/7.



Stochastic number generators (SNGs)

The component that converts a real number to a stochastic bit stream is usually referred to as an SNG. (RNG)

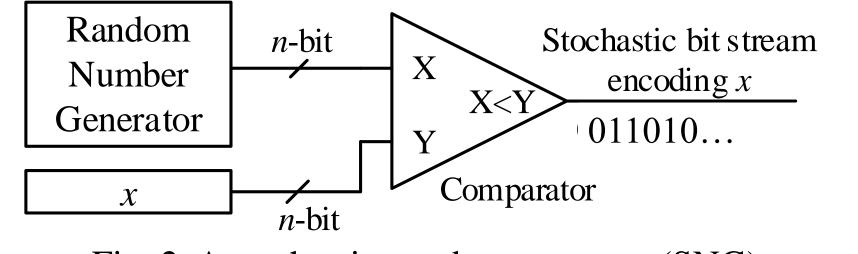


Fig. 2. A stochastic number generator (SNG).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\frac{2}{3} 0 1 (0.1000001)_2 0.19 1$ $3 0 0 (0.1000000)_2 0.62 0$ $c_{i+1} = c_i + \frac{1}{2^N} (a_i - b_i). (1)$ Accumulating (1) for $i = 0, 1, 2,, k - 1$ $c_k = c_0 + \frac{1}{2^N} \sum_{i=0}^{k-1} (a_i - b_i). (2)$ Taking expectation of (2)	0	1	0	$(0.1000000)_2$	0.75	0
$3 0 0 (0.1000000)_2 0.62 0$ $c_{i+1} = c_i + \frac{1}{2^N} (a_i - b_i). (1)$ Accumulating (1) for $i = 0, 1, 2,, k - 1$ $c_k = c_0 + \frac{1}{2^N} \sum_{i=0}^{k-1} (a_i - b_i). (2)$ Taking expectation of (2)	1	1	1	$(0.1000001)_2$	0.20	1
$c_{i+1} = c_i + \frac{1}{2^N} (a_i - b_i).$ (1) Accumulating (1) for $i = 0, 1, 2,, k - 1$ $c_k = c_0 + \frac{1}{2^N} \sum_{i=0}^{k-1} (a_i - b_i).$ (2) Taking expectation of (2)	2	0	1	$(0.1000001)_2$	0.19	1
Accumulating (1) for $i = 0, 1, 2,, k - 1$ $c_k = c_0 + \frac{1}{2^N} \sum_{i=0}^{k-1} (a_i - b_i). \qquad (2)$ Taking expectation of (2)	3	0	0	$(0.1000000)_2$	0.62	0
$c_k = c_0 + \frac{1}{2^N} \sum_{i=0}^{k-1} (a_i - b_i) . $ Taking expectation of (2) (2)		(1)				
Taking expectation of (2)	Accui	nulatin	g (1) fo	r i = 0, 1, 2,, k	- 1	
	$c_k = c_k$	(2)				
$\mathbb{E}[c_k] = c_0 + \frac{1}{2^N} \sum_{i=0}^{k-1} (\mathbb{E}[a_i] - \mathbb{E}[b_i]). $ (3)	Takin	g expec	tation of	of (2)		
	$\mathbb{E}[c_k]$	$= c_0 +$	$\frac{1}{2^N}\sum_{i=1}^{k}$	$\mathbb{E}_0^{-1}(\mathbb{E}[a_i] - \mathbb{E}[b_i]).$		(3)

$\hat{y}_{i+1} = y_i + hf(hi) \approx y(h(i+1)).$ (5)By accumulating (2) for i = 0, 1, 2, ..., k $\hat{y}_k = y_0 + h \sum_{i=0}^{k-1} f(h \cdot i) \approx y(h \cdot k).$ (6)

For (3), let $c_0 = y_0$, $\mathbb{E}[a_i] - \mathbb{E}[b_i] = f(h \cdot i)$, then (1) $\mathbb{E}[c_k] = \hat{y}_k \approx y(\frac{k}{2N})$, with $h = \frac{1}{2N}$.

The stochastic integrator provides an unbiased estimate of the Euler solution with step size $h = \frac{1}{2N}$.

Reference:

[1] J. C. Butcher. 1987. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley-Interscience.

[2] B. R. Gaines. 1969. Stochastic Computing Systems. Springer US, 37–172.

[3] N. Saraf, K. Bazargan, D. J. Lilja, and M. D. Riedel. 2014. IIR Filters using Stochastic Arithmetic. In DATE.

[4] J. P. Hayes. 2015. Introduction to Stochastic Computing and Its Challenges. In DAC.

Stochastic ODE Solvers

Hardware Performance

	1	I	
Results	by stoch	nastic	

Time ΛQ

