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Fig. 6. Normalized average performance for stochastic and binary ODE solvers.
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Hardware ODE Solvers Using Stochastic Circuits

Introduction

Conclusion

 The stochastic integrator provides unbiased estimation for Euler solution.

 The stochastic ODE solvers have lower energy consumption, higher

throughput and shorter minimum computation time than their binary

counterparts with high calculation accuracy.

 Sharing the RNGs for generating the input stochastic sequences of the

stochastic integrator can reduce the random variation.

Fig. 2. A stochastic number generator (SNG). 

Fig. 3. A stochastic integrator.

Nonhomogeneous ODE solvers

Stochastic Integrator and its Formulation

Stochastic ODE Solvers

Stochastic Computing (SC)

In SC, information is carried by a stochastic bit stream.

For example: {0101100}, coding 3/7.

Stochastic number generators (SNGs)

The component that converts a real number to a

stochastic bit stream is usually referred to as an SNG.

𝒊 𝒂𝒊 𝒃𝒊 𝒄𝒊 𝐑𝐍𝒊 𝒔𝒆𝒒𝒐𝒖𝒕

0 1 0 0.10000000 2 0.75 0

1 1 1 0.10000001 2 0.20 1

2 0 1 0.10000001 2 0.19 1

3 0 0 0.10000000 2 0.62 0

 Recall Euler method for solving
𝑑𝑦 𝑡

𝑑𝑡
= 𝑓 𝑡 ,

Table 1. An example of stochastic integrator with bit width 8 (N=8)
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Fig. 1. A stochastic computing system. 

Abstract

 A stochastic integrator approximates the integration of

the difference of two input stochastic sequences:

∫ 𝑎 − 𝑏 𝑑𝑡.

 Hardware ordinary differential equation (ODE) solvers

are designed by using stochastic circuits.

 The stochastic ODE integrators serve as unbiased

Euler solution estimators.

 Several strategies are proposed to reduce the error of

stochastic ODE solvers; the designs are verified.

 The stochastic ODE solvers have lower energy cost,

higher throughput and shorter minimum computation time

than their binary counterparts.
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𝑐𝑖+1 = 𝑐𝑖 +
1

2𝑁 𝑎𝑖 − 𝑏𝑖 . (1)

Accumulating (1) for 𝑖 = 0, 1, 2, … , 𝑘 − 1

𝑐𝑘 = 𝑐0 +
1

2𝑁
 𝑖=0

𝑘−1(𝑎𝑖 − 𝑏𝑖) . (2)

Taking expectation of (2)

𝔼 𝑐𝑘 = 𝑐0 +
1

2𝑁
 𝑖=0

𝑘−1 𝔼 𝑎𝑖 − 𝔼[𝑏𝑖] . (3)

y(t)

t
h

1

yif(t)

 𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖) , (4)

where ℎ is the step size and 𝑡𝑖 = ℎ ⋅ 𝑖.

(4) can be converted to

 𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓 ℎ𝑖 ≈ 𝑦(ℎ(𝑖 + 1)). (5)

By accumulating (2) for 𝑖 = 0, 1, 2, … , 𝑘

 𝑦𝑘 = 𝑦0 + ℎ 𝑖=0
𝑘−1𝑓(ℎ ⋅ 𝑖) ≈ 𝑦 ℎ ⋅ 𝑘 . (6)

For (3), let 𝑐0 = 𝑦0, 𝔼 𝑎𝑖 − 𝔼 𝑏𝑖 = 𝑓(ℎ ⋅ 𝑖), then

𝔼 𝑐𝑘 =  𝑦𝑘 ≈ 𝑦(
𝑘

2𝑁), with ℎ =
1

2𝑁.

The stochastic integrator provides an unbiased

estimate of the Euler solution with step size 𝒉 =
𝟏

𝟐𝑵.

Error Assessment

Fig. 4. The Euler method.

𝑑𝑦 𝑡

𝑑𝑡
= 1 − 0 (7)
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𝑑𝑡
= 𝑡 (8)
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+

2𝑑𝑦 𝑡

𝑑𝑡
+ 𝑦 𝑡 = 0 (11)

(a)

(b)

(c)

Fig. 5. Results produced by stochastic

ODE solvers vs. analytical solution for: (a)

(7), (8) and (9); (b) (10); (c) (11).

An auxiliary function z(t) is introduced to satisfy
𝑑𝑧 𝑡

𝑑𝑡
=

𝑑2𝑦 𝑡

𝑑𝑡
+

2𝑑𝑦 𝑡

𝑑𝑡
to reduce order.

Hardware Performance

EPO: Energy per operation

TPA: Throughput per area

Time: Total minimum computation time

RMSE: Root-mean-square error

The measurements are all normalized.

As per 𝔼 𝑐𝑘 = 𝑐0 +
1

2𝑵
 𝑖=0

𝑘−1𝔼 𝒂𝒊 − 𝒃𝒊 =

 𝑦𝑘 ≈ 𝑦(
𝑘

2𝑁), one can

 Increase N to decrease the step size 1/2𝑁;

 Share the RNGs to generate 𝑎 and 𝑏;

 Use low-discrepancy (LD) sequences to

generate 𝑎 and 𝑏.

(RNG)

*PR: pseudorandom sequences generated by the

linear feedback shift registers (LFSRs).
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